A New Bibenzyl Derivative from Dendrobium moniliforme

Zhi Ming BI, Li YANG, Zheng Tao WANG*, Luo Shan XU, Guo Jun XU

Department of Pharmacognosy, China Pharmaceutical University, Nanjing 210038

Abstract: A new bibenzyl derivative, 3,4-dihydroxy-4',5-dimethoxy bibenzyl, was isolated from a orchid *Dendrobium moniliforme*. The structure elucidation and ¹H, ¹³C NMR assignments were achieved by spectroscopic method.

Keywords: Orchidaceae, Dendrobium moniliforme, 3,4-dihydroxy-4',5-dimethoxy bibenzyl.

The chinese crude drug "Shihu", derived from the dried or fresh stems of many plants of Genus *Dendrobium*, is usually used to clear heat and for the benefit of eyes. In previous communications^{1,2,3} we reported the isolation of some phenolic compounds from *Dendrobium chrysotoxum* Lindl., in this paper, we report the isolation of a new phenolic compound from *Dendrobium moniliforme* (L.) Sw.. The structure of the new compound **1** was established as 3, 4-dihydroxy-4',5-dimethoxy bibenzyl (**Scheme**) from the spectral evidence.

Scheme The HMBC correlation of compound 1

The 95% EtOH extract of *D. moniliforme* was partitioned with petroleum ether and acetone, successively. The acetone fraction was further fractionated on silica gel column chromatography to afford the compound **1**. Compound **1** was a viscous solid, UV λ max(MeOH) at 203, 277nm showed characteristic of bibenzyls. EI-MS *m/z*: 274(M⁺) and HR-MS *m/z*: 274.1207(calculated 274.1025) suggested the molecular formula to be C₁₆H₁₈O₄. The ¹H-NMR spectrum of **1** exhibited a 4H signal at δ 2.71 characteristic of methylene protons in a bibenzyl nucleus. Two singlets at δ 3.69(s, 3H) and 3.66(s, 3H) indicated the presence of two aromatic methoxyl groups; two singlets at δ 6.66 and 6.33(disappearing on deuterium exchange) for two normal phenolic hydroxyl protons. In addition, there were six aromatic protons at δ 7.01(d, 2H, J=8.2Hz), 6.78(d, 2H, J=8.2Hz), 6.44(d, 1H, J=1.3Hz) and 6.20(d, 1H, J=1.3Hz). The EI-MS of compound **1** showed two intense peaks at *m/z* 153(44) and 121(base peak) arising by the

Zhi Ming BI et al

cleavage of benzylic linkage. The ion peak at m/z 153 required two hydroxyl and one methoxyl groups in ring A and the remaining fragment at m/z 121 required the placement of one methoxyl group in ring B. The coupled pattern of the signals at δ 7.01 and 6.78 gave the evidence that the methoxyl group should be located at C-4'.

The ¹³C NMR spectrum gave fourteen carbon signals. The DEPT spectrum revealed four tertiary carbons, six quaternary carbons, two second carbons and two methoxy carbons, and suggested that C-2', C-3' and C-5', C-6' had the same δ c value (129.3 and 113.4). The COLOC spectrum showed that the signals at $\delta_{\rm H} 2.71$ (a,a'-CH₂) was correlated with the signals at δ c129.3(C-2',6'), 108.7(C-2), 103.6(C-6), and not correlated with the signal at δ c113.4(C-3',5'). The signal at δ c143.7(C-3) was correlated with the signal at $\delta_{\rm H} 6.44({\rm H-2})$, δ c130.5(C-4) was correlated with the signals at $\delta_{\rm H} 6.20({\rm H-6})$ and 6.44(H-2); δ c146.9(C-5) was correlated with $\delta_{\rm H} 3.66(-{\rm OCH_3})$ and $\delta_{\rm H} 6.20({\rm ring A})$. All the above data supported that the methoxyl group($\delta_{\rm H} 3.66$) should be substituted at C-5 of ring A, and the two hydroxyl groups substituted at C-3 and C-4, respectively. Hence, compound **1** was assigned as 3,4-dihydroxy-4',5-dimethoxy bibenzyl. The assignment of the position was further confirmed by the HMQC spectrum. ¹H, ¹³C NMR spectra data of compound **1** are listed in **Table 1**.

Position	δ _c ppm	δ _H ppm
1	133.4	
2	108.7	6.44(d, 1.3Hz)
3	143.7	
4	130.5	
5	146.9	
6	103.6	6.20(d, 1.3Hz)
1'	133.7	
2',6'	129.3	7.01(d, 8.2Hz)
3',5'	113.4	6.78(d, 8.2Hz)
4'	157.3	
5-OCH ₃	55.7	3.66(s)
4'-OCH ₃	54.9	3.69(s)
a-CH ₂	37.6	2.71(m)
a'-CH ₂	36.7	2.71(m)

Table 1¹H and ¹³C NMR spectra data of compound 1 (CDCl3)

References

- 1. G.X. Ma, Z.T. Wang, L.S.Xu, et al., J Chin Pharm Sci., 1998,7 (2),59.
- 2. G.X. Ma, G.J. Xu, L.S.Xu, et al., Acta Pharm sin., 1994, 29 (10),763.
- 3. G.X. Ma, G.J. Xu, L.S.Xu, et al., Acta Pharm sin., 1996, 31 (3),222.

Received 21 September, 2001